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Abstract

The parallel measurement of transcriptome and proteome revealed unmatched profiles. Since proteomic analysis is more expensive
and challenging than transcriptomic analysis, the question of how to use messenger RNA (mRNA) expression data to predict protein
level is extremely important. Here, we comprehensively evaluated 13 machine learning models on inferring protein expression levels
using RNA expression profile. A total of 20 proteogenomic datasets from three mainstream proteomic platforms with >2500 samples
of 13 human tissues were collected for model evaluation. Our results highlighted that the appropriate feature selection methods
combined with classical machine learning models could achieve excellent predictive performance. The voting ensemble model
outperformed other candidate models across datasets. Adding the mRNA proxy model to the regression model further improved the
prediction performance. The dataset and gene characteristics could affect the prediction performance. Finally, we applied the model
to the brain transcriptome of cerebral cortex regions to infer the protein profile for better understanding the functional characteristics
of the brain regions. This benchmarking work not only provides useful hints on the inherent correlation between transcriptome and
proteome, but also has practical value of the transcriptome-based prediction of protein expression levels.
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Introduction
The correlation between proteins and their messenger
RNA (mRNA) abundances has been a fundamental ques-
tion [1, 2]. Although the mRNA sequence determines
the protein sequence according to the central dogma,
mRNA abundance and the corresponding protein abun-
dance is not simply correlated, especially in different
scenarios [3]. Protein levels are largely determined by
coding mRNA under steady-state conditions. However,
the protein level during dynamic transitions is influ-
enced by many factors, including protein translation
rate affected by synthesis capacity, protein’s half-life
affected by ubiquitin-proteasome pathway system, pro-
tein synthesis delay affected by ribosome saturation of
high-abundance housekeeping proteins and the tempo-
ral and spatial distribution difference between mRNA
and protein [1, 4]. Concurrent measurement of mRNA
and protein genome-wide is also important for depicting
the proteogenomic landscape of diseases, but protein
quantification at high depth is more laborious, expen-
sive and challenging than transcriptome quantification.
Given the cost burden of proteomics, only about 20 pro-
teogenomic datasets (matched proteome and transcrip-
tome data from the same specimen) have been published

after years’ extensive studies by National Cancer Insti-
tute (NCI) Clinical Proteomic Tumor Analysis Consortium
(CPTAC), Chinese Human Proteome Project (CNHPP) and
other groups [5–24] (Table 1). In these datasets, spec-
imens at physiological conditions were collected at a
single-time point and steady-state protein and RNA lev-
els were quantified by proteomic and bulk transcrip-
tome profiling. Therefore, protein levels in this work
are the average level of many cells of tissue samples.
These proteogenomic cohorts have repeatedly shown low
mRNA–protein correlations (median value 0.2–0.4) and
large intergene variability. For example, the metabolism-
related gene showed high correlations, while ribosome
genes showed low or negative correlations.

Low correlation between protein and mRNA levels
indicates a complicated network of gene regulation
driving all genes’ expression. Since RNA quantification
of a specimen is more routine and stable at higher
throughput platforms, inferring protein level from RNAs
computationally is intriguing and beneficial for the
research of proteogenomics. This would also enable
the mining of the mRNA expression data from large
discovery cohorts without matched proteomic measure-
ment. Therefore, CPTAC launched a community-based
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Table 1. Overview of 20 proteogenomic datasets used in this work

Group Dataset name Source Year Project Specimen source Tissue Transcriptome-
proteome
matched
sample

Tumor
sample

Normal
sample

Label-
free

CO_labelfree [5] 2014 CPTAC Colon and rectal cancer Intestine 86 96 0
BN_labelfree [9] 2017 BrainSpan Healthy brain Brain 71 0 71
PR_labelfree [6] 2019 None prostate cancer Prostate 65 65 0
LV_labelfree [8] 2019 CNHPP Hepatocellular Carcinoma Liver 62 35 35
LU_labelfree [7] 2020 CNHPP Lung cancer Lung 76 51 49

TMT LV_tmt [10] 2019 None Hepatocellular carcinoma Liver 318 159 159
CO_tmt [14] 2019 CPTAC Colon cancer Intestine 95 110 0
RC_tmt [15] 2019 CPTAC Renal cell carcinoma Kidney 185 110 84
PBN_tmt [18] 2020 CPTAC Pediatric brain cancer Brain 188 218 0
BR_tmt [24] 2020 CPTAC Breast cancer Breast 122 134 0
EC_tmt [11] 2020 CPTAC Endometrial carcinoma Uterus 115 95 49
LU_1_tmt [12] 2020 CPTAC Lung cancer Lung 211 110 101
LU_2_tmt [13] 2020 None Lung cancer Lung 89 90 90
LU_3_tmt [22] 2021 CPTAC Lung squamous cell

carcinoma
Lung 202 108 99

HN_tmt [17] 2021 CPTAC Head and neck squamous
cell carcinoma

Mucosa 151 108 66

PA_tmt [23] 2021 CPTAC Pancreatic cancer Pancrea 140 140 67
BN_tmt [16] 2021 CPTAC Glioblastoma Brain 108 99 10

iTRAQ BR_itraq [19] 2016 CPTAC Breast cancer Breast 77 77 0
OV_itraq [20] 2016 CPTAC Ovarian cancer Ovary 119 169 0
GC_itraq [21] 2019 CPTAC Gastric cancer Stomach 80 80 80

‘challenge’ in 2017, aiming to improve the predictability
of protein levels from transcriptome and reported top-
performing models after an unbiased assessment on
two cancer datasets [19, 20, 25]. The challenge’s top
models work well for a subset of proteins, albeit still
far from perfect-predicting protein level globally. The
best performing method, described in Li’s study [26],
is a Random Forest Regression (RFR) model using all
RNA features supplemented with mRNA level as a proxy.
The authors found using all features was better than
using selected features by protein abundances [26]. Li’s
method is abbreviated as teamHL&YG in this study. The
challenge also reports four other models including the
CPTAC baseline model based on Elastic Net (baselineEN)
using all RNA features, an RFR model using prioritized
RNA features with mRNA proxy (teamHYU), an ensemble
model using gene copy number, prioritized RNA features
and other gene metadata (teamDEARGENpg) and a least
absolute shrinkage and selection operator (LASSO) model
using gene copy number and prioritized RNA features
(teamDMIS_PTG). Models derived from the challenge
serve as a valuable resource and basis for further
improvement.

To further improve performance on this task, several
influencing factors should be considered. First, collecting
more independent datasets would help optimize models.
To the best of our knowledge, inferring protein levels
from RNA expression profiles has not been bench-
marked comprehensively in more tissues for all three
mainstream proteomic platforms. Therefore, a large up-
to-date collection of high-quality datasets is in great
demand. Second, feature selection is very important

for machine learning with limited training samples.
Selecting features by prior information, such as RNA
abundances, gene network or pathway knowledge, was
utilized by three of the top four models, although
it seemed unnecessary for the RFR model [25, 26].
Specifically, the correlation-based feature selection
method was used in one of the top four models, which
prioritizes RNAs by Pearson’s correlation with target
protein groups (instead of a single protein) across all
the data. A similar correlation-based feature selection
was also used in our work on blood-based tissue gene
expression prediction, where features with the highest
absolute cosine similarity (ACS) were selected for each
target [27]. Third, the performance of ensemble models
is preferred but linear and nonlinear regression models
were not significantly different [25]. Therefore, the
lack of comprehensive benchmarking of protein level
inference performance of different machine learning
models, feature numbers and independent datasets
from different tissues, leaves users without indications
as to which prediction method could achieve optimal
performance.

Here, we first curated a collection of publicly acces-
sible datasets from three mainstream proteomic plat-
forms. We improved the transcriptome-based protein
level prediction performance model by introducing
feature selection into classical regression models. To
validate our method with independent datasets, we
benchmarked the existing methods, our improved
models, other ensemble models and Neural Network
(NN) models. Moreover, we proposed the voting ensemble
of six models which performed superior in most
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benchmarking datasets. We then analyzed the influenc-
ing factors of protein’s predictability. Finally, we applied
the model to infer protein profiles of the cerebral cortex
regions using the available brain transcriptome dataset.
In summary, this study illustrated the practical value
of the transcriptome-based protein level prediction on a
wide range of tissues.

Materials and Methods
Dataset collection and preprocessing
The datasets were collected from proteogenomic cohorts
(Table 1) and preprocessed using a unified pipeline,
including gene ID mapping, NA value removal, normal-
ization and standardization (Supplementary Methods).
After preprocessing, we constructed 20 datasets consist-
ing of 2560 tumor/control samples of 13 human tissues,
such as colon and rectum, prostate, lung, liver and brain
tissues.

Each dataset was split for modeling and evaluation
using 5-fold cross-validation (CV). In each of the five iter-
ations, the dataset (X, Y) was randomly partitioned into
80% for training (denoted as {xi, yi}N

i=1, where i is sample
id) and 20% for testing. More details were described in
Supplementary Methods.

The prediction model
We illustrated the modified predictive model in a flow
chart, in which per-protein feature selection steps were
shown (Figure 1A). We formulated a multitask regres-
sion model for inferring protein level using RNA profile
of the same sample. Mean absolute error (MAE), root
mean squared error (RMSE) and Pearson’s correlation
coefficient (PCC, r) were used to evaluate the predic-
tive performance of a target protein. Candidate machine
learning models were linear regression (LR), LASSO, ridge
regression (Ridge), Huber regression (HR), support vector
regression (SVR), RFR, three NN models with 2–3 hidden
layers (NN1, NN2 and NN3) and four ensemble methods
(Bagging, Boosting, Stacking and Voting).

Three existing methods baselineEN, teamHYU and
teamHL&YG were implemented and compared to our
models in this study. BaselineEN is an elastic net model,
whose regularization hyperparameter is optimized with
5-fold CV. TeamHYU used both RFR using prioritized
RNA features and mRNA proxy model which directly
used RNA level as predicted protein level. If gene
predictive performance of RFR is better in 5-fold CV
within the training set, teamHYU outputs RFR predict
value. Otherwise, teamHYU outputs mRNA proxy value.
TeamHL&YG has three components: mRNA proxy model,
RFR model trained on one dataset and pan-cancer RFR
model trained on combined dataset. No optimization
was needed for the mRNA proxy model. The pan-
cancer model was trained on combined isobaric tags
for relative and absolute quantification (iTRAQ) datasets
of two tissues because of the limited sample size of the

CPTAC challenge. We decided not to include the pan-
cancer model for two reasons: first, the combination of
tandem mass tag (TMT) datasets is not feasible because
each dataset has its own inner control; second, recent
cohorts are using more samples so that low sample
size is not a problem. Therefore, improving performance
requires efforts in building a regression model and
incorporation of proxy model into regression. Briefly, we
benchmarked four feature selection methods followed by
13 regression models against baselineEN and proposed
the best candidate model; next, the mixing ratio of proxy
and regression model was optimized within the range
of (1:0, 9:1, 7:1, . . . , 1:7, 1:9, 0:1); the final ‘regression+
proxy’ model was compared to baselineEN, teamHYU
and teamHL&YG.

The other two existing methods of teamDEARGENpg
and teamDMIS_PTG were not comparable to ours
because they also use DNA copy number variation as part
of input features. Implementation details of the models
were described in Supplementary Methods.

Feature selection
The feature length of most linearly correlated RNAs is
a crucial hyperparameter. Assume vector y(p) represents
the expression value of target proteinp in all N training
samples and vector x(R) represents the expression value
feature RNAR in all N training samples. We quantify the
ACS between feature vector x(R) and target vector y(p). R
is considered highly correlated with p when their ACS
value is close to 1. We can prioritize arbitrary S features
for protein pby ACS approach and, therefore, reduce fea-
ture dimension as desired. To determine optimal feature
length, we evaluated the models’ protein level prediction
performance by CV on the training set with a series of
feature lengths S ∈ [10, 20, 50, . . . , 5000]. For all target
proteins, when the model trained with reduced feature
sets have the smallest average MAE, smallest average
RMSE and the largest average r in the serial experiments,
the value S is the optimal feature length So for this
specific dataset. Select top So features to construct the
final dataset {x′′

i(p)
, yi(p)}N

i=1
, where x′′

i ∈ RSo
, So << N. Three

other feature selection methods were compared to ACS,
which are raw cosine similarity, Spearman’s correlation
and random selection. The teamHYU method can be
viewed as another control method for ACS feature selec-
tion because it includes feature selection by neighbor
relations on the PPI network and Pearson’s correlation
value.

Weighted voting ensemble model
To test whether an ensemble improves the prediction per-
formance, a voting ensemble with customized weights
(Voting-wt) was defined as weighted mean of six classical
models. These voting ensembles had their own optimal
feature length on each dataset. The average metric cor-
relation (r) of all proteins in each optimal model was cal-
culated using 5-fold CV on the training set. The ascending
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Figure 1. Overview of flow chart and benchmarking datasets. (A) Flow chart of the enhanced predictive model with feature selection module. The
datasets of transcriptome-proteome matched samples from Labelfree, TMT and iTRAQ platform are used to train dataset-specific models. The trained
model can be used for protein level inference. The summary of proteogenomic cohort datasets used in this work is shown in (B) and (C). (B) Pie plot: the
area of section is proportional to sample size; the color indicates dataset and its platform. (C) Bar plots show the number of RNA, protein and overlapping
genes. Violin plots show RNA–protein correlations by Pearson’s and Spearman’s correlation coefficient.

rank of r was used to derive the models’ weight. Specifi-
cally, the sum of model weights was 1, so the weight from
the best to the worst model was 6

21 , 5
21 , 4

21 , 3
21 , 2

21 and 1
21 ,

respectively. Then, retrain models with optimal feature
length and new weights on the whole training set and
evaluate on the hold out test set. The predicted values
from the six models were combined by corresponding
weight as the predicted output of Voting-wt. The analysis
was exclusively performed on the large datasets which
have >150 samples.

Dataset complexity
We adapted the concept of data complexity from single-
cell RNAseq and implemented the computation of data
complexity locally (Supplementary Methods). The aver-
age expression of every gene for each cell population in a
dataset was calculated to represent the prototype of the
cell population in the full gene space before describing
the complexity of a dataset in ref. [28]. In this study,
samples were directly treated as prototypes of the data
matrix. Full features were used to measure the com-
plexity of RNA/protein matrix of each dataset. Briefly,

the gene expression profile of samples was standardized
by gene. Next, pairwise Pearson’s correlation between
samples was calculated. For each sample, the maximum
correlation to another sample was recorded. Finally, the
mean value of these per sample maximum correlations
was taken to describe the complexity of matrix. The
dataset complexity value was collected in both RNA and
protein levels.

Gene characteristics
Ten characteristics of genes were included as potential
effect factors on protein’s predictability, which are
posttranslational modification (PTM), gene relation
to human disease, gene expression tissue specificity,
protein complex membership, protein subcellular local-
ization, protein functional class, protein half-life, gene
essentiality, gene length and protein relative abun-
dance compared to other genes. Gene and protein
characteristics were retrieved from public data source,
including OMIM (version 2020-07-30, https://www.omim.
org) [29], Human Protein Atlas (version 2021-02-24,
https://www.proteinatlas.org) [30], iPTMnet (version 6.0,
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https://research.bioinformatics.udel.edu/iptmnet/) [31],
peptide turnover dataset [32], CORUM (version 3.0 http://
mips.helmholtz-muenchen.de/corum/) [33] and Bartha’s
review study [34]. We preprocessed the categorical
variables and assigned a unique category for each gene
at every characteristic level (Supplementary Methods).
For the other numerical factors, we sort the genes by the
value of the factor and split them into two groups, labeled
as long/short or high/low group, respectively. Each gene
was assigned to one major group in every characteristic
level for convenience. Any genes without any annotation
in a characteristic level were omitted from the specific
analysis.

Implementation and visualization
Pearson’s and Spearman’s correlation coefficients were
implemented by scipy.stats from scipy v1.3 [35] in Python
v3.7. Prediction models were implemented with scikit-
learn v0.21 [36] and NN library scorch (https://skorch.
readthedocs.io/en/stable/) using default parameters
unless otherwise specified in Supplementary Methods.
After optimal feature length was determined, the run-
time of feature selection, model training and model test
were benchmarked on Linux servers (AMD EPYC 7742 64-
Core CPU 2.25GHz, 1 Tb RAM) (Supplementary Table S1).
The plots were visualized using Matplotlib v3.1 [37]
in Python, ggplot2 v3.3.3 [38] and ggpubr v0.4.0 in R
v4.0.3. In figures with significance marks, statistical
significance was indicated by the following convention:
∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001, ∗∗∗∗P ≤ 0.0001. Principal
component analysis (PCA) was performed in SIMCA
v15.02 (Umetrics, Sweden) statistical software.

Results
Overview of curated benchmarking datasets
To analyze protein prediction comprehensively, we
curated a total of 20 datasets consisting of 2560
tumor/control samples of 13 human tissues from cohort
publications (Figure 1B). Twelve datasets used TMT-
labeled quantitative proteomics, three used iTRAQ
quantification, while the other five used label-free
quantification. Therefore, the datasets are representative
of protein expression prediction challenges. The TMT
datasets consist of more samples than the other two
groups. 7000–13 000 proteins were identified in each
dataset before preprocessing and 2200–8800 high-quality
proteins were retained after preprocessing (Figure 1C).
More proteins were detected in TMT and iTRAQ profiling
datasets than in label-free ones. The detected RNAs
were > 10 000 in every dataset. On average, the datasets
had 5339 proteins with mRNA levels available (Figure 1C).
The median Pearson’s/Spearman’s correlation coeffi-
cients were 0.12–0.60 and 0.10–0.55, respectively. The
protein–RNA correlation coefficients of the dataset did
not strongly correlate with sample size, protein number
and RNA number.

Benchmark of regression models and feature
selection methods on curated datasets
In our previous work on gene expression inference tasks,
we observed that a small set of selected blood RNA
features linearly correlated with a target gene expressed
in tissues could result in good predictive performances
[27]. The ACS was used to prioritize features for blood-
based tissue gene expression prediction models. Since
protein prediction tasks are similar to those gene
expression inference settings, it is worth testing whether
ACS could improve protein prediction performance. As
a preexperiment, we adopted ACS to quantitate how
well one RNA is linearly correlated with the protein
on the same data sets [25, 26], namely ‘OV_itraq_itraq’
and ‘BR_itraq’ in benchmarking datasets. We calculated
pairwise ACS between all possible RNA–protein pairs
using the training set split. For each protein, we took
10–5000 prioritized RNA features by ACS to construct a
series of low-dimensional RNA feature sets. Then, we
fit the RFR model (used by winner teamHL&YG) and
compared its predictive performance across different
low-dimensional feature sets and the full feature set
using a 5-fold CV scheme. In metric r and at least one of
the errors, RFR with ACS selected features perform better
than that with all features at some ‘sweet point’ feature
length. No improvements were observed with randomly
selected features (Supplementary Figure S1). RFR using
ACS prioritized features is a better choice than no feature
selection in these two iTRAQ datasets.

We next investigated the effect of feature selection
on the performance of nine classical regression models,
which are LR, LASSO, Ridge, HR, SVR, RFR, NN1, NN2
and NN3. On each of the 20 datasets, model fitting
and evaluation were conducted after RNA feature
prioritization by ACS and three other feature selec-
tion methods, respectively. As shown in column 6 in
Supplementary Figures S2–S4 and Supplementary Table
S2, the RFR model performed the best at about 200
optimal features on 18 datasets out of 20. The results
of the three performance metrics showed that the
overall performances of the RFR model did not change
dramatically with feature lengths near optimal points.
When feature length decreased from the maximum all
to the minimum 10, the performances increased first
and decreased later. Comparing four feature selection
methods, ACS improved RFR performance more than the
other three methods in more than half datasets (14/20,
12/20, 12/20 in terms of r, RMSE, MAE, respectively)
(column 6 in Supplementary Figures S2–S5). When
random features were used as parallel controls, RFR
performances descended all the way when feature length
decreased.

We extended the analysis to nine regression models
and consistently observed the comparative advantage
of ACS (columns 1 ∼ 9 in Supplementary Figure S5).
Random features were worse than prioritized features
at almost any feature length. We next analyzed nine
classical regression models with ACS prioritized features
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at different feature length (Supplementary Figures S2–
S4). The linear models (LR, Ridge and HR) descended to
the lowest performance around 100 prioritized features
and the optimal performances were achieved at either
>5000 or <20 optimal features. The performance of Lasso
was insensitive to feature number compared to that of
LR, HR and Ridge models. SVR with a nonlinear kernel
had a similar performance trend to RFR. NN1 ∼ NN3
models achieved optimal performance at 1000–5000
features. Interestingly, the optimal performance of
nonlinear models was quite comparable to the linear
models, suggesting that linear and nonlinear models
have their respective advantages. Moreover, performance
with <20 features was comparable to that of the optimal
feature set. These results on benchmarking datasets
confirmed the necessity of feature selection for protein
level inference models.

We will analyze how much were the models improved
using prioritized features by ACS and optimal feature
length (Figure 2A). All nine models outperformed base-
lineEN in more datasets with ACS prioritized features
than themselves with all features (Figure 2B). However,
the beneficial effect of ACS seemed to be dataset depen-
dent. The median performance of optimal RFR was the
best among the nine models and still not better than
baselineEN (Figure 2C). The relatively good performance
of RFR in our analysis explained its popular usage in
existing methods of teamHYU and teamHL&YG.

Performance of ensemble model
The weighted mean ensemble is a type of voting
ensemble. They combine the predictions from multiple
models proportionally to each model’s capability. Voting
ensemble of multiple models (teamHL&YG, teamHYU,
teamDEARGENpg, teamDMIS_PTG) where the average
metric (r) of all proteins in each model as model’s voting
weight were superior over individual ones in two tissues
[25]. Next, we investigated Voting/Stacking ensemble
models of six classical models (LR, LASSO, Ridge, HR,
SVR, RFR), Boosting ensemble of 50 (default) decision tree
regressors (DTRs), Bagging ensemble of 10 (default) DTRs
with curated benchmarking datasets. The ensemble
models were built with their own optimal ACS feature
sets. Then, we compared the performances of a total of 13
models: m1–m6: six classical models, m7–m9: three NNs,
m10: Boosting, m11: Bagging, m12: Stacking ensemble of
m1–m6, and m13: Voting ensemble of m1–m6.

As shown in Figure 2 and Supplementary Figures S2–
S4, the upper and lower limits of four ensemble model
performances depend strongly on the dataset in use.
All models generally performed better on TMT datasets
than on iTRAQ and label-free datasets (Figure 2A).
BaselineEN performs the best in six datasets (Figure 2B).
The Voting/Stacking ensemble achieved better overall r
than baselineEN in 12/20 and 9/20 datasets, respectively.
RFR with optimal feature sets was the third-best model
which performs better than baselineEN in 9/20 datasets
(Figure 2B). The median performance of Voting ensemble
was the best among 13 models in terms of r, RMSE and

MAE (Figure 2C). Compared to baselineEN, Voting ensem-
ble was better in terms of r, but not in terms of RMSE
and MAE. We next investigated voting ensemble with
customized weights (Voting-wt) of six classical models
on five largest datasets. Voting-wt was only improved
marginally in 3/5 datasets (Supplementary Figure S6).

Performance improvement by adding proxy
model
The above benchmarking analysis of prediction models
was focused on the regression model (Figure 2 and
Supplementary Figures S1–S6). We next evaluated how
a proxy model, a simple but essential component of the
original teamHYU and teamHL&YG method, affects the
performance of 13 models. Only those common genes
with both protein and RNA measurements were included
in this proxy model analysis (the number of common
genes shown in Figure 1C). As shown in Figure 3 and
Supplementary Table S3, the optimal regression model
performed better in 15 datasets and the proxy model
performed better in 5 datasets. When the proxy model
was mixed with the regression model at a range of ratios,
every mixture model gained performance improvement
(Figure 3A, B and Supplementary Figures S7 and S8). The
top-performing mixture ratio of proxy to regression
was 1:3 for most models on average (Figure 3C). Since
regression model accounts for a larger proportion,
we named the final mixture as regress + proxy. The
regress+proxy models were 15% better than regres-
sion themselves in terms of r on average (Figure 3D).
These results together with the previous literature
showed that the mixture of regression model and proxy
model can reach a better performance than either
model.

Evaluation of final models and existing models
We next evaluated whether final regress+proxy models
perform better than existing models. Voting+proxy
at ratio 1:3 ranked first overall and maintains the
best performance in 10/20, 5/20, 5/20 datasets in
terms of r, MAE and RMSE, respectively (Figure 4A and
Supplementary Table S4). We here noticed that rankings
of models by three performance metrics were sometimes
different though generally consistent. For example,
Stacking+proxy ranked first in 4/20, 4/20, 4/20 datasets;
teamHL&YG ranked first in 1/20, 1/20, 1/20 datasets;
baselineEN ranked first in 2/20, 3/20, 3/20 datasets
(Figure 4A and Supplementary Figure S9). BaselineEN
(without proxy) seemed to be a simple and competitive
method. Figure 4C showed that the median performance
of Voting+proxy across 20 datasets was the best among
all models in three metrics.

Moreover, gene-wise comparison of model perfor-
mances confirmed the superiority of Voting+proxy over
existing models in 13/20 datasets (Table 2). We then
compared the performance of all models on training
splits and the test splits (Supplementary Table S5). The
range of r was 0.7–0.9 in training fit and 0.2–0.7 in test
fit. The results suggested that all models, including
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Figure 2. Evaluation of the effect of ACS feature selection on 20 datasets using baselineEN and 13 regression models. (A) Scatter plots show the
performance metric r and RMSE. Marker shape indicates with (triangles) or without (circles) feature selection. All triangles indicate the models
outperform baselineEN with ACS prioritized features. (B) Left panel, the number of models outperform baselineEN in each dataset; right panel, the
number of datasets that each model outperforms baselineEN. (C) Relative performance comparison. Model performance metrics are normalized by that
of baselineEN in the same dataset. Good models are supposed to have r > 1 and RMSE/MAE < 1.

both ours and existing ones, showed a certain degree
of overfitting in benchmarking datasets.

The relationship between overall predictability
and data sets characteristics
Since the remarkable variation of protein inference per-
formance across benchmarking datasets, we investigated

what characteristics of datasets affect the overall perfor-
mances with the weighted mean model. Multiple charac-
teristics of datasets were collected, including sample size,
RNA number, protein number, number of tissue-specific
genes, gene-level mRNA–protein correlations, the com-
plexity of RNA and protein matrices and proteomic plat-
form (Supplementary Table S6).
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Figure 3. Performance improvement by adding proxy to 13 regression model and teamHL&YG. Bar plots show the distribution of top-performing mixing
ratio (proxy:regression) for all [model, dataset] pairs in terms of r: (A) each model on all 20 datasets and (B) each dataset with all 14 models. (C) The
best ratio distribution of any models and datasets in terms of three metrics. (D) Relative performance comparison before and after adding proxy. Model
performance fold change are calculated for models in the same dataset. Good models are supposed to have r > 1 and RMSE/MAE < 1.

As shown in the left column of Figure 5 and Supple-
mentary Figure S10, total protein and tissue-specific
gene number of datasets affected model performances
but RNA number did not, which indicates that the
depth of protein profiling experiment is an important
influencing factor. Noticeable performance difference
between proteomic platforms was observed, which
agrees with previous results (Figures 4 and 5). The
complexity of RNA and protein matrices were both
positively correlated with model performances (middle
column of Figure 5 and Supplementary Figure S10). The
performance of datasets was improved when the sample
size increased and when the mRNA–protein correlation
coefficient increased (right column of Figure 5 and
Supplementary Figure S10). These results indicated that
the optimal performances vary across datasets might

be explained by the differences of proteomic datasets
characteristics.

The relationship between protein predictability
and gene characteristics
As shown in Table 2, there was considerable variation in
protein prediction performance at gene level. We want
to investigate whether the prediction performance is sig-
nificantly different in the various subset of protein, so we
use gene characteristics to group and compare the pro-
teins. Multiple factors may influence the prediction per-
formance of genes, such as protein complex membership
and protein half-life [26]. To the best of our knowledge,
gene characteristics and protein predictability have not
been investigated side-by-side across multi-tissue and
multi-platform datasets. Using Voting ensemble mixed
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Figure 4. Performance of three existing models and 13 optimized regression+proxy models on 20 datasets. (A) Model performance in three metrics: (top
panel) r, (middle panel) RMSE and (bottom panel) MAE. Dot colors indicate models; horizontal axis represents datasets. Good models are supposed to
be higher in top panel and lower in middle/bottom panels. (B) Relative performance comparison. Model performance metrics are normalized by that of
baselineEN in the same dataset. Good models are supposed to have r > 1 and RMSE/MAE < 1.

with proxy as a representative model, we investigated
the potential effects of gene characteristics on protein’s
predictability.

Briefly, genes outside protein complexes were better
predicted than genes belonging to protein complexes
(Figure 6A and Supplementary Figure S11A). Genes
with high tissue-specific expression were better pre-
dicted than non-tissue-specific genes (Figure 6B and
Supplementary Figure S11B). Long half-life proteins
were better predicted than short half-life proteins
(Figure 6C and Supplementary Figure S11C). Genes with
long peptide length were better predicted than genes

with short peptide length (Figure 6D and Supplemen-
tary Figure S12A). The two factors, gene relation to
human disease and protein subcellular localization,
did not affect protein predictability in most datasets
(Figure 6E–F and Supplementary Figure S12B, C). Protein
abundance was positively correlated with protein
predictability in label-free datasets (Figure 6G and
Supplementary Figure S13A). Consistent with Yang’s
study [25], ribosomal proteins were worse predicted
than other protein functional classes (Figure 6H and
Supplementary Figure S13B). Proteins modifiable by
sumoylation, phosphorylation or glycosylation were
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Table 2. Model performance comparison per protein

Model performance in metric r P-value of Wilcoxon signed-rank test

BaselineEN TeamHYU TeamHL&YG Voting+Proxy H1:
Voting+Proxy
>baselineEN

H1:
Voting+Proxy
>teamHYU

H1:
Voting+Proxy
>teamHL&YG

CO_labelfree 0.169 ± 0.217 0.213 ± 0.195 0.270 ± 0.180 0.259 ± 0.187 3.1e-168 2.1e-68 1
BN_labelfree 0.383 ± 0.268 0.368 ± 0.254 0.377 ± 0.243 0.398 ± 0.242 1.1e-12 3.7e-66 2.5e-84
PR_labelfree 0.201 ± 0.238 0.234 ± 0.229 0.286 ± 0.211 0.298 ± 0.213 4e-270 2.4e-167 3.6e-23
LV_labelfree 0.419 ± 0.213 0.425 ± 0.202 0.471 ± 0.180 0.509 ± 0.164 1.2e-218 1.5e-209 1.1e-162
LU_labelfree 0.351 ± 0.237 0.316 ± 0.218 0.302 ± 0.231 0.327 ± 0.214 1 1.4e-08 4.7e-39
LV_tmt 0.691 ± 0.150 0.634 ± 0.168 0.646 ± 0.162 0.697 ± 0.137 3.5e-45 0 0
CO_tmt 0.251 ± 0.226 0.292 ± 0.199 0.342 ± 0.180 0.328 ± 0.192 0 6.7e-116 1
RC_tmt 0.726 ± 0.171 0.712 ± 0.178 0.723 ± 0.173 0.734 ± 0.162 2.5e-91 2.7e-273 6.7e-115
PBN_tmt 0.653 ± 0.153 0.636 ± 0.152 0.642 ± 0.150 0.654 ± 0.147 5.2e-05 1.2e-185 4.4e-180
BR_tmt 0.497 ± 0.213 0.487 ± 0.196 0.524 ± 0.188 0.554 ± 0.175 0 0 0
EC_tmt 0.611 ± 0.206 0.591 ± 0.199 0.629 ± 0.188 0.654 ± 0.175 0 0 1.7e-253
LU_1_tmt 0.682 ± 0.187 0.659 ± 0.186 0.682 ± 0.174 0.691 ± 0.172 1.6e-83 0 3.6e-132
LU_2_tmt 0.201 ± 0.196 0.238 ± 0.187 0.265 ± 0.168 0.291 ± 0.167 0 7e-269 7.6e-259
LU_3_tmt 0.714 ± 0.176 0.691 ± 0.179 0.713 ± 0.169 0.711 ± 0.169 1 0 1
HN_tmt 0.663 ± 0.203 0.641 ± 0.194 0.673 ± 0.180 0.672 ± 0.185 4e-55 0 0.039
PA_tmt 0.389 ± 0.191 0.377 ± 0.171 0.412 ± 0.164 0.429 ± 0.161 2.4e-225 0 4.3e-140
BN_tmt 0.647 ± 0.189 0.631 ± 0.180 0.668 ± 0.165 0.684 ± 0.160 0 0 3.5e-306
BR_itraq 0.348 ± 0.228 0.393 ± 0.223 0.457 ± 0.191 0.432 ± 0.206 0 2.7e-159 1
OV_itraq 0.464 ± 0.231 0.469 ± 0.205 0.508 ± 0.189 0.506 ± 0.197 6.2e-228 1.1e-174 1
GC_itraq 0.190 ± 0.195 0.245 ± 0.165 0.305 ± 0.150 0.324 ± 0.148 0 0 2.1e-65

Best performing model for each dataset is indicated in bold.

Figure 5. The relationship between predictability and characteristics of data sets. Dots represent datasets. Dot size represents sample size and dot shape
represents platform. Scatter plots: vertical axis represents performance r (top row), RMSE (middle row) and MAE (bottom row); horizontal axis from left
to right represents the number of proteins, number of tissue specific proteins, complexity of protein matrices and PCC between mRNA and protein.
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better predicted than other PTM types (Figure 6I and
Supplementary Figure S13C). Proteins of essential genes
were worse predicted than those of nonessential genes
(Figure 6J and Supplementary Figure S13D).

Validation of model performances on human
brain atlas dataset
The Allen Institute for Brain Science created a com-
prehensive atlas of the human brain by transcriptome
profiling hundreds of anatomically precise subdivisions,
such as cerebral cortex regions parietal lobe (PL),
frontal lobe (FL), occipital lobe (OL), temporal lobe (TL),
cingulate gyrus (CgG), cerebellar cortex (CbCx) and
other neurological nuclei [39, 40]. However, no similar
proteome atlas is available. To predict brain region
proteome expression, a prediction model was pretrained
on the BN_labelfree dataset and take the Allen transcrip-
tome dataset as input data (Supplementary Table S7).
The predicted proteome was visualized in PCA plots
(Figure 7, Supplementary Table S8). The agreement
between samples’ annotation and proteome/transcrip-
tome profiles was also evaluated with three clustering
performance metrics (Silhouette Coefficient, Davies-
Bouldin score and Calinski & Harabasz score). At the
measured transcriptome level, CbCx was far separated
from the other six regions; Striatum (Str) and globus
pallidus (GP) were also clearly grouped, but other
regions were not be separated from each other. At the
predicted proteome level, the obvious separation of
CbCx, Str and GP was still preserved. Moreover, the
proteome-based grouping of OL, PL, FL, TL and CgG
substructures within the cerebral cortex was clearer than
the transcriptome. OL, classic visual processing cortex,
formed a compact cluster separated from other cerebral
cortex regions (Figure 7C, D). The CgG region, involved in
emotion processing and behavior regulation, is known to
exhibit distinctive cytoarchitectural structure from other
neocortex. Indeed, the CgG was more tightly grouped
at the predicted proteome level. Similar phenomena
were observed in samples from the second donor of
Allen’s dataset. Taken together, predicted proteome
better reflected the cytoarchitectural and functional
characteristics of brain regions than input transcriptome.

User guide on predicting protein profiles
Users are recommended to download our Github repos-
itory which contains a tiny training set (100 genes×200
samples) and script files. All 16 predictive models of this
study were wrapped into demo.py. Users should run this
demo as a first try to understand the format of the tran-
scriptome input and predicted proteome output. Then,
users can move to work on either the 20 benchmarking
datasets (see Data availability) or in-house data. The
prepacked models are highly adjustable and new models
can be incorporated into the pipeline.

Conclusion and Discussion
In this study, we curated a collection of datasets with
matched protein-RNA profiles, benchmarked machine
learning models on inferring protein expression levels
using RNA expression profile. Then, we proposed the
weighted mean of six classical models as a new ensem-
ble model for RNA-profile-based protein expression
inference. We demonstrated that the Voting ensemble
model outperformed other candidate models across
most benchmarking datasets. Adding the proxy model
to the new model would further improve the prediction
performance. Our work would enable in-depth reanalysis
of important biological samples with only transcriptome
measurements available. Therefore, we applied the
pretrained prediction model to the brain mRNA profile of
cerebral cortex regions and showed the inferred protein
profile better reflected the functional characteristics of
brain regions than the RNA expression profile. This case
study on a real-world dataset highlighted the potential
benefit of computationally predicting protein expression
and suggested that prediction models could complement
transcriptome data.

Dataset characteristics would affect prediction per-
formance. Large dataset size and complexity make the
model capture the underlying pattern in more detail.
Moreover, the positive correlation between protein num-
ber and dataset performance indicates that the pro-
teomic data depth and quality are crucial and should be
improved in future. The difference in these characteris-
tics might explain the inferior performance (1) on label-
free datasets compared to TMT datasets, and (2) in some
tissues than others (Figure 6). Independent validation on
more replicate datasets is necessary for mucosa (head-
neck), ovarian and stomach tissues which have single
dataset available until now.

Gene characteristics would also affect prediction
performance. First, ubiquitination-modified proteins
showed lower prediction performance, while SUMO-
modified proteins showed higher prediction perfor-
mance. The ubiquitin–proteasome pathway system
would lead to protein degradation, and modulate the
protein half-life. SUMOylation is a partner of ubiq-
uitination in protein stability regulation [41]. Second,
genes outside protein complexes were better predicted
than genes belonging to protein complexes. Protein
forming complexes were more likely coregulated post-
transcriptionally [42]. Ribosomal genes, also complex
proteins, showed worse prediction than other genes,
probably because ribosome genes showed low or negative
correlations between mRNA and protein level [5, 20].
Third, the prediction models were more effective in
predicting tissue-specific genes, providing the possibility
to do protein biomarker analysis in disease-related
tissues. Last, essential genes showed lower prediction
performance. Gene essentiality could offer insights into
biology, clinical genetics and drug development [34,
43]. Our results suggested experimental measurements
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Figure 6. Gene characteristics affecting protein’s predictability. Box plots show the distribution of performance metric r of gene groups side by side. Genes
are grouped by (A) protein complex membership, (B) gene expression tissue specificity, (C) gene length, (D) protein half-life, (E) gene relation to human
disease, (F) protein subcellular localization, (G) protein relative abundance compared to other genes, (H) protein functional class, (I) posttranslational
modification and (J) gene essentiality.

were still necessary if essential genes are the key
concerns.

Previous brain proteogenomic study of Carlyle et al.
found that the protein data could amplify the cytoarchi-
tectural and functional variation between brain regions
than mRNA data [9]. Our previous proteogenomic study
of the 29 Brodmann area in the human brain cerebral cor-
tex also found that proteomic data could better reflect
the functional parcellation of the brain cerebral cor-
tex, such as Cg and OL [44]. In this study, we used the
Allen transcriptome dataset of human brain to predict
brain region proteome expression using machine learn-
ing models. The predicted proteome better reflected the

cytoarchitectural and functional characteristics of brain
regions than input transcriptome, which was consistent
with the findings of Carlyle and our previous studies.
The prediction model showed good performances on the
human brain transcriptomic dataset and might provide
new insight on the molecular basis of brain functions.

Our work has several limitations. First, we handled
missing values by removing all genes that contain
NA values in datasets instead of using the same data
imputation of Li’s study [26]. We used minimal complete
datasets only to reduce imputation-induced bias. Second,
we didn’t train a so-called pan-cancer model or trans-
tissue model because the common genes between

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac091/6555405 by guest on 30 M

arch 2022



Evaluation of machine learning models | 13

Figure 7. Predicted protein profiles recapitulate the brain structure. Row 1: PCA plots show the distance of samples computed from (A) RNA profiles
(input, experimental data) and (B) protein profiles (output, computational inferred data) of whole brain. Row 2: PCA plots of (C) RNA profiles and (D)
protein profiles of the cerebral cortex. Dots represent brain samples, and are colored by their brain region. Three clustering performance metrics are
calculated (Supplementary Methods): Silhouette: Silhouette Coefficient (the best value is 1 and the worst value is −1), DBI, Davies-Bouldin score (lower
values indicating better clustering) and CH, Calinski & Harabasz score (lower values indicating better clustering). CCx, Cerebral cortex; Ins, insula; PHG,
parahippocampal gyrus; Str, striatum; GP, globus pallidus; CbCx, cerebellar cortex; PL, parietal lobe; FL, frontal lobe; OL, occipital lobe; TL, temporal
lobe; CgG, cingulate gyrus.

datasets are very few. Third, protein–mRNA correlations
in the original cohort publication of the datasets were not
directly comparable to the values in our work because
the preprocessing procedure was different. Fourth, it
is worth noticing that RNA features from ACS-based
feature selection were predictive variables of their target
protein, but it does not necessarily indicate regulatory
relationship between RNAs and target protein. Fifth,
deep learning model and RFR have been used to predict
24 cell-surface protein abundances from transcriptome
using single-cell multimodal omics data [45–47]. The
sample size of benchmarking datasets is three orders
of magnitude lower than single-cell datasets. It is
probably why the deep learning models did not perform

well in this work. Finally, for ease of computation, we
reimplemented ‘teamHL&YG’ model rather than using
the original authors’ codes directly. The output of our
reimplementation and original implementation were
almost identical (Supplementary Table S9).

In summary, this benchmarking work on transcriptome-
based proteome prediction provides useful hints on how
to optimize and use the models. This work will also
help researchers understand the inherent correlation
between transcriptome and proteome. With computa-
tionally estimated but large-scale proteogenomic char-
acterization of tumor samples, insights on patient strati-
fication and prognosis can be gained by analyzing cancer
biology at both proteome and transcriptome levels.
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Data Availability
All raw data were retrieved from openly accessible
source. Preprocessed data sets generated in this study
are available as Supplementary Tables and EBI BioS-
tudies [48] under accession S-BSST733. The source
code is shared at https://github.com/xuwenjian85/
GeneExpressPredProtein. Further materials are available
upon reasonable request to the corresponding authors.

Key Points

• We improved previous transcriptome-based protein level
prediction model by introducing feature selection.

• We curated the largest collection of benchmarking
datasets from three mainstream proteomic platforms,
benchmarked our improved model and proposed a new
ensemble model with superior performance.

• We analyzed the influencing factors of predictability at
gene level and dataset level.

• We applied the model to brain transcriptome of cere-
bral cortex regions and showed the inferred protein pro-
files better reflect the functional characteristics of brain
regions than RNA expression profile.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.
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